
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5376 308

Methodology to Shielding Against SQL Injection

Using Internet Protocol Address

Sanjay Mishra
1
, Subodh Mishra

2
, Vivek Sharma

3

Student, CSE, TIT College, Bhopal, India1

Professor, CSE, TIT College, Bhopal, India2

Head of Department, CSE, TIT College, Bhopal, India3

Abstract: SQL Injection Attacks (SQLIAs) is a technique through which an unauthorized user can access over

database by inserting malicious SQL query segment. The major caused of SQLIAs is improper coding and improper

validation of user input. The integrity, confidentiality and availability of web applications are infected by these types of
attacks. Now-a-days online services play an important role in our day-to-day life such as email, e-banking, ecommerce,

social networking sites, forum etc. However vulnerabilities in these applications may create a wide range of risk as

these all contains confidential data such as personal information, banking details and many mores. In this paper we will

discuss different types of SQLIAs technique and an algorithm for their preventions against those attacks. This

algorithm defeat SQL Injection at different level and protect database to reveal any confidential data from database

server when any illegal query is injected for compromising the security. The algorithm using hexadecimal and ASCII

value for preventing SQLIAs and a fixed error message is set for protecting database to reveal any valuable information

in form of error message.

Keywords: Vulnerability, Structure Query Language Injection Attacks (SQLIAs), Web Application, Hexadecimal,

ASCII value, Internet Protocol (IP) Address.

I. INTRODUCTION

Web application plays very vital role in our day-to-day life

as it make life efficient and smooth. As use of internet is

increasing tremendously in many simple things like

shopping is change into e-commerce, banking is changed

into e-banking, social life is changed into social

networking, and communication via email is very

common. With the increasing usages of internet, it is very

challenging to secure all the data of user from an

unauthorized users and attackers. Web application stores
data of users in database and only returns the relevant

information when it’s receives the request from user after

validating the same. But the attack exploits the database

server by exploiting its vulnerabilities by various methods.

SQL Injection is one of the most prevalent threats to these

web applications from a decade and Open Web

Application Security Protection(OWASP) 2013 report

these attacks as number one attack [1]. In the report it is

shown that the attacks is most damaging factor caused due

to illegal query. Vulnerabilities found for these types of

attacks using SQL Injection is more than 95% which
compromises with integrity, availability and

confidentiality of database server. SQLIAs are used by

attacker to not only bypass the authentication but it also

exploits the data by modification in it. Sometimes it is use

to exploit the flows of websites, upgrading or degrading

the privileges of any users over web application and for

shutting down the database too. There are number of

methods and algorithm was given for preventing these

attacks but it is unfortunate that they still exits. It is matter

of concern to protect it so we have proposed some solution

for preventing database server from SQLIAs efficiently.

II. APPROACHOF SQL INJECTION ATTACKS

SQL Injection are using security breaches in any web

application for exploiting the database server but there is

no any standard definition of these attacks which are

defined. Only it is defined as, when illegal SQL code is

injected in access which compromises the integrity,

availability, confidentiality, of any database server, its

termed as SQLIAs [2]. An attacker generally injects an

illegal query in form of URL’s and cookies. After

validating the query the database server gives some error
message and sometime it responses differently for attacks

which depends on the type and version of database server

the web application using. An attacker can also identify

the database server by response pattern. In 2004 Microsoft

China Technology Center defined SQLIAs in form of two

aspects [3].

A. Script Injection Attacks.

B. Malicious user input to affect the implantation of the

SQL script.

Whenever the illegal code is injected to affect the

implementation of the SQL script, the database server

behaves differently and sometimes results in form of error

message which is treated as information that allow them to
know the database schema information such as table name,

column names, data types, and sometimes data value [4].

Many of the times database server tables and field name

can be also got by system tables “sysobjects”. And when

SQL Injection is correct in syntax, attacker can alter the

database and also not be detected easily [5]. The attacks

are implemented after finding the SQL Injection

vulnerability and judging the type and version of database.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5376 309

III. TYPE OF SQL INJECTION ATTACKS

SQL Injection are implemented because of several reasons

such as misuse of delimiters in query string, data types are

not distinguish explicitly, flaws in types specification,

undefined users input, no check or filtered before

execution of databases. For preventing SQL Injection

attacks we need to know its type the method through

which it can be implemented. SQL Injection are

characterised as:

A. Tautology
In this attack the query appends the conditional statements

“WHERE” clause as always true query and it produce

legal dynamic query that puts all condition true and return

all records.

Figure 1: Tautology Attack

Injected Query: select account from USERS where

LOGINID= “SANJAY” and PASSWORD =0” or “0”=‟0.

In above case the Login Id is “SANJAY” and Password is

0” or “0”=‟0. The statement transforms entire WHERE

clause into tautology i.e. always true.

B. Illegal/Logically Incorrect Query

This attack is treated as information gathering phase of

attacks as when any illegal query is injected, a logical

error is produce by the database server reveals valuable

information such as server types and it’s version, syntax
error, type mismatch and other inject able parameter

information.

Original Query: http://www.demo.com/users.php?id=109

Injected Query: http://www.demo.com/users.php?id=109’

From the error return by the database server, the attacker

knows the type and version of database and sometime the

SLQ query pattern for injection.

C. Union Query

In this attack the injected query is concatenated with
original SQL query using the keyword UNION to return

the dataset by the server when structure of database such

as table name and column name are known.

Injected Query: http://www.demo.com/user.php?id=109’

union all select 1,2,3- -

By using this desired point of injection is known for

extracting the data inside the database.

D. End of comments

By injecting this attack all the query after these symbol “-

-” are treated as a comment and desired result output

comes.

Figure 2: End of Comment Attack.

Here, if only Login Id is known to attackers then they can

use this technique to validate the users.

E. Stored Procedure
Attacker uses this type of attack to execute the remote

command and for performing privilege escalation. Stored

procedure uses special scripting language but sometimes

misuse of delimiters gives privileges to the attackers to

attack denial of service attack, buffer overflow attack and

also leads to run the arbitrary code on server to escalate

the privileges of database server [6].

F. Inferences

When database server do not gives any error because web

application is configured by error handling method. In this
case the attackers observe the response of web application

such as the time taken to load the page or response of

functions. There are two types of attacks categorised as

Inferences attacks.

Blind injection Attacks.

Timing Attacks.

Blind Injection Attacks – In this attack, the attackers inject

the query by which server generate an error message as the

query is invalid and the error message itself contain

database structure. And after gaining information in form
of error message the attacker will attempt to reverse

engineering.

Timing Attacks – In this attack, the attacker inject code in

manner that they are asking from database in a way that in

particular condition is true and valid then perform action

like delay in replay page loading as if database version

contains number like 28 (like 28) have a 20 second delay

before replay and load the page [7].

Injected Query for MySQL Server and Oracle:

http://www.demo.com/users.php?id=109 and If (version ()
like “28”, sleep (20), “false”) - -

Injected Query for Microsoft MySQL Server:

http://www.demo.com/users.php?id=109 and If (version ()

like “28”, WAIT FOR (20), “false”) - -.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5376 310

G. Piggy Backed Query

This attack is only implemented if database configured in

way that its gives permission to attackers that they can run

multiple queries at the same line. This attack includes new

distinct queries without any modification in original query.

Injected Query: select account from USERS where

LOGINID= “SANJAY” and PASSWORD= “password”;

drop table USERS - - and PIN= “4321” - -.

H. Alternate Encoding

The database server configured with Intrusion Detection
System (IDS) or any signature based filter check system

then the attacker’s uses alternate encoding technique to

bypass the same systems. This encoding technique is also

uses to bypass such systems by modifying text string into

Unicode, ASCII, Hexadecimal, Base64 etc. and if require

it is used in conjunction with some other methods to

penetrate the desired system or to escape from any of the

detection tools and methods.

Example: For shutting down of any database server the

alternate encoding in ASCII is
exe(Char (115, 104, 117, 116, 100, 111, 119, 110))- -

It is ASCII form of shutdown and if in database it’s

defined as SHUTDOWN then, the encoding is

exe(Char (083, 072, 085, 084, 068, 079, 087, 078))- -

Other Encoding forms of “SHUTDOWN” for bypassing

the detection system are:

Hexadecimal Encoding of “SHUTDOWN” is

53485554444f574e.

Unicode Encoding of “SHUTDOWN” is \u0053 \u0048

\u0055 \u0054 \u0044 \u004f \u0057 \u004e.

Decimal Encoding of “SHUTDOWN” is 00083 00072

00085 00084 00068 00079 00087 00078.

Base64 Encoding of “SHUTDOWN” is U0hVVERP04.

IV. RELATED WORK

After carefully study about SQL Injection we came at

decision that various prevention methodology comprises
of method such as input validation, secure coding

techniques, tainting approach are able to protect SQL

Injection. But still SQLIAs exist as improving coding

flows, using parameterized query, tainting approach

cannot prevent SQLIAs. An approach to prevent against

SQL Injection was given in an algorithm [8]. We will take

a part of the approach because the proposed technique was

implemented in three phase where in order to minimizing

the storing space it save ASCII of both username and

password in a same attributes separated by a special

symbol say comma(,). But it leaves some improper coding

practice and no any method is proposed for preventing
attack when number of times attacks is performed by same

individual. In proposed method using of comma (,) as a

special symbol for splitting the strings make it complex

and irrelevant as security point of view. Because now a

day a username and password are using special character

or symbol such as curly bracket {}, round bracket (),

square bracket {}, hash #, colon :, semicolon :, caret ^,

comma ,, fullstop ., question mark ?, exclamation ! mark,

bar or pipe |, ampersand &, underscore _, back tick „ at @,

dollar $, per cent %, slash /, backslash\, arithmetic

symbols + - * =, single quote ’, double quotes ” for

making the systemsecure. University of Sussex, United

Nation has given these facilities for their users [9]. There

are number of attributes in database so if we use comma

(,) as a special symbol for separation of string cause

complexity in database system.

USERID

PASSWORD

ASCII for

ARRAY

SEPERATED by

COMMA (,)

SANJAY MISHR@
83 65 78 74 65 89,

77 73 83 72 82 64

SUBOD

H
PROF@TIT

83 85 66 79 68 72

95 83 73 82, 80 82

79 70 64 84 73 84

VIVEK HOD@CS

86 73 86 69 75 95

83 73 82, 72 79 68

67 83 84 73 84

TIT_CS BHOPAL
84 73 84 95 67 83,

66 72 79 80 65 76

Figure 3:Database in which ASCII value of both username

and password in single attribute.

The injection is able to protect from all type of injected

query such as timing attack and alternate encoding attacks.

It is not able to protect from the injection such as

Inferences. So prevention from other threat is difficult and
security is also major concern for these days.

V. PROPOSED SOLUTION

In proposed methodology we will discuss about the

prevention of SQLIAs at various level. The proposed

methodology will be implemented at two levels.

Coding Level
While coding the developer have to limit the length of

user’s information according to requirement so that SQL

injection is not being performed and also convert the input

value into ASCII value. Now each ASCII value will

multiply by its position number in token which it was

divided as single entity. After multiplying ASCII value of

each literal in token by its position and sum the value then

save it in the database.

Example: select account from USERS where LOGINID=

“SANJAY” and PASSWORD= “654321”;

Here, SANJAY is change into ASCII S=83, A=65, N=78,

J=74, A=65, Y=89 and then after multiply the ASCII with

its position number in token as

SANJAY=83*1+65*2+78*3+74*4+65*5+89*6=1602.

Algorithm for storing input value

Step 1: Declare an array, int type and say [n];

Step 2: Store the entered value into string, say str;

Step 3: Convert the string into character type array say

ch[20];

Step 4: Store all ASCII value of array ch in array n at

respective index after multiplying by its position number

in token.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5376 311

Step 5: From a string using the value of the array n, each

value is separated using space.

Step 6: Store the string in database.

Figure 4: Architecture of value storing method in database.

Algorithm for User Authentication:

Step 1: Store the value entered by the user into the input

field into a string say s;

Step 2: Convert the string s into char type array as s1 [20];

Figure 5: Architecture for user authentication.

Step 3: Convert each value of array s1 into ASCII code

and store them in an int type array say n1 [];

Step 4: Form a string using the value of array s1 in array

n1 after multiplying by its position number in token. Each

value is separated by space.

Step 5: Compare the entered value in database, if matched

then authenticate and go to step 8 else save the log entity

in log database.

Step 6: If log entities are matched go to next else go to

step 1;

Step 7: Block the IP and display the error message

“HTTP-500 Internal Server Error”.

Step 8: Display the desired string and authenticate the
user.

At Server Level

Figure 6: Architecture of proposed model.

Database server will be configured with Intrusion

Detection System (IDS) and attack database which

identified the newly attacks pattern and if the same user

trying to inject illegal query block the user by analyzing

the error message with the help of Store System for User

Information and save Internet Protocol address in the log

file.

As the proposed methodology protect the web application

at two levels, it gives better prevention than other model

that attacker even bypass then also the secure method will
prevent web application by SQLIAs.

Administrator of web application must be ensure that the

running account is having minimal privileges [10], and if

any alternation is required in database it is only performed

by SQL server login and that connection login must be

encrypted.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5376 312

Figure 7: Flow chart of proposed model.

If any illegal query is injected, database server only

returns an error message “HTTP-500 Internal Server
Error” in each case of illegal attacks without evaluating

the type of attacks.

LOG ENTITY

Figure 8: Table for log entry in database.

VI. RESULT AND CONCLUSION

The proposed algorithm is able to handle all SQLIAs.

According to result of proposed methodology it effectively

and efficiently prevents SQL Injection attacks. For

experiment we use ASP.Net base science and MIS

framework. This is better solution for SQLIAs as it helps

in detection and prevention of attacks from different types

of malicious query attacks. This methodology works on

any type of server and its version and imposed no any

restriction on user. If illegal query is applied two
consecutive times using same IP then system block the

user and save the log details in database for future

prevention.

VII. FUTURE WORK

This methodology protects all SQL Injection by analyzing

the injected query pattern and also by error message

analyzing. And then blocks the IP address whenever

illegal query will be applied using same IP. But there is

room for improvement to protect it when attacker uses

Virtual Private Network (VPN) having property to

switching their IP at regular interval.

REFERENCES
[1]. OWASP Top Ten Project [EB/OL]. 2016-03-10].

https://www.owasp.org/index.php/Category:OWASP_Top_ten_proj

ect.

[2]. DebabrataKar; SuvasiniPanigrahi; “Prevention of SQL Injection

Attack using Query Transformation and Hashing”, 3rd IEEE

International Advance Computing Conference (IACC). Pp.1317-

1323, 2013.

[3]. Microsoft China Technology Center, SQL Server Safety Review.

[URL]http://www.microsoft.com/china/etc/Newsletter104/ctc2-

html; 2004.

[4]. Sanjay Mishra; Subodh Mishra; Vivek Sharma; “SQL Injection

Prevention by Blocking Internet Protocol Address after Analysing

Error Message of Database Server.” (IJCSIT) International Journal

of Computer Science and Information Technologies, Vol. 7 (2) ,

2016, 566-569, 2016.

[5]. Xiaobing Chen, hanyu Zhang, liming Luo, He Huang, “SQL

Injection Attack and to Prevent Detection Technology (J).

Enginnering and Application of Computer, 2007, 43(11).

[6]. E.M Fayo, “Advance SQL Injection in Oracle Database”, Technical

report, Argeniss Information Security, Black hat USA, 2005.

[7]. A.Sadeghian, M.Zamani, ShahidanM.Abdullab, “A taxonomy of

SQL Injection Attacks”, DOI 10.1109//CICM.2013.53; IEEE 2013.

[8]. MahimaSrivastava, “Algorithm to Prevent Back End Database

Against SQL Injection”. 978-93-80544-12-0/14; IEEE 2014.

[9]. My IT Account, [url]http://www.sussex.ac.uk [2016-03-15].

[10]. Microsoft China MSDN, Application Security Solutions in SQL

Server. [url]http;//msdn.microsoft.com/zh-cn/library/bb669057.

BIOGRAPHY

Sanjay Mishra received the B.E

degree in Computer Science and

Engineering from Technocrats Institute

of Technology, RGPV Bhopal, Madhya

Pradesh, India in 2013. He is a
Research Assistant as pursuing M.Tech

from RGPV University. His research

interests are SQL Injection Attacks, Computer Networks,

and Vulnerability Assessments etc.

